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X/. Abstract

Techniques and criterion for selection of the "best" subset of
variables to be used in a regression model are reviewed.

A model was developed using the Automatic Interaction Detection (AID)
algorithm as a pre-screening device for locating those variables most
important to the regression including interaction terms.

Five previous models including the one developed by AID and one
developed by Westinghouse on avionic characteristic data are used in
cross validation experiments to determine the predictive power of these
models on a new set of qitgxpoints uging the same set of variables.

A cross validation R2 vav;e/is discugsed as a criterion for choosing

between competing models.
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CROSS VALIDATION OF SELECTION OF

VARIABLES IN MULTIPLE REGRESSION

I Introduction 1

Background

Long term DoD planning gcals require than operational and support
costs on all projects be reduced. Managers of these projects are )
challenged by the need for accurate evaluation of these projects in
the early design stages. A question arises, however, concerning whether
model development and enhancement should be contracted out-of-house or
done using available efforts of Air Force personnel in-house. Performing
a cost analysis in-house would surely reduce costs. Also, performing
an in-house cost analysis would benefit the user of the model by
providing first hand knowledge of the impacts of updates and changes in
the data base on the final results and may discover intermediate
results unknown to a contractor.

One prerequisite for the user to perform in-house analysis is the
availability of the necessary computer packages. Another is the
knowledge of the user in applying other effective methods of analyzing

the goodness of fit of the models other than the R? value or

F-statistic discussed in the next chapter. Once the user of the model

attains these prerequisites, in-house analysis can be performed. i
Since these prerequisites for an in-house capability of cost

estimation were not availlable at the time, the Systems Evaluation

Branch (AAA-3) of the Air Force Avionfcs Laboratory at Wright-Patterson

Air Force Base requested that the Westinghouse Electric Corporation

perform a regression analysis on certain characteristics of Line




Replaceable Avionic Units (LRUs).

The Westinghouse approach was to select "candidate" LRUs for inclusion
in the data base, collect data on design and logistic characteristics
on the LRUs, perform a regression analysis on the data, then use the
resulting cost and parametric relationships to construct a model. The
resulting model was named the Avionics Laboratory Predictive Operations
and Support (ALPOS) model [36].

One of the problems Westinghouse encountered, which most analysts
encounter also, involved the process used in the selection of the data.
Probably the most important element in the research is the nature of
the data which was used. Many different situations can arise from
"bad" data and wrong assumptions about the data such as whether the data
subset collected is statistically different from the underlying
population or whether multicolinearity exists between variables.

In the initial phase, several LRUs were identified and considered
for inclusion in the data base from a wide variety of avionic units
placed on various types of aircraft. The LRU selection was naturally
constrained by the availability of the data and on the number of aircraft
on which the LRU was installed. This initial data base (Phase I)
consisted of sixty-three LRUs from seven different aircraft.

For their regression analysis, Westinghouse used the Linear
Least-8quares Curve Fitting Program (LLSCFP) developed by Daniel and
Wood [8]. This computer program uses over thirty statistics and five
types of plots in assisting the analyst develop meaningful variable

relationships.
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In his Masters thesis, Captain Larry Pulcher attempted to provide
the means for the members of AAA-3 to conduct their own in-house cost-
estimation analysis by developing and testing criterion for selection
of variables in a regression analysis including iterative techniques
using the Statistical Package for the Social Sciences (SPSS), all ,
possible regressions using the International Mathematical Statistical
Library (IMSL) routine RLEAP, and the Omnitab computer package used to
compute prediction intervals. A

Both Westinghouse and Pulcher had available a set of potential
variables which could be considered for inclusion in the model, however,
both sets of variables were too large (more variables than data points).
Westinghouse used an approach in which "candidate" variables were screened
and tested before admission to the model. Pulcher used a screening

technique to eliminate certain candidate variables before hand.

Focus of this Research

Westinghouse has recently updated the data collected in the initial
phase. This new Phase II data base includes sixty-five additional LRUs
Plus six previous ones placed on different aircraft for a total of
seventy-one LRUs. Also, four additional aircraft have been included.
See Table I for a summary of the LRUs investigated.

One objective of this research is to review past research in the

area of selection of variables in a regression analysis in the hope

of stimulating thoughts and ideas of those analysts interested in

s

combining talents on this subject.

.
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A second objective of this research is to examine the three previous
models developed by Pulcher and the Phase I model developed by
Westinghouse and determine which of the models predicts the Phase Il
data the best.

A third objective of this research is to use the Automatic
Interaction Detection (AID) algorithm documented by Sonquist and
Morgan (33, 34] to prescreen variables from the entire data set and
create a model based on the Phase I data and perform the same predictive
tests mentioned above using the Phase II data. A Leaps and Bounds
algorithm was used to assess various AID models to determine which one
should be represented in the subsequent analysis.

Finally, updated coefficients were calculated for the best

predictive model determined in objectives two and three above.




TABLE I
Summary of LRUs Investigated
: t Aircraft ! PHASE I PHASE II TOTAL
) ! |
| F4E 11 3 | 14
E RF4C 8 - ] 8
1 F15A f 10 20 30
B52G/H 18 1 19
KC135A 5 - 5
C130E : 5 6 11
C5A i 6 9 é 15
k F106A | - 2 | 2
| F111D - 20 : 20
i FB111A - 10 : 10
|
i TOTAL 63 7 : 134
-" |
!
H
|
. . . e i




ITI Concept Overview

Theory of Least Squares Regression

The fundamental premise of a regression analysis is to build a
model useful in predicting a single dependent or criterion variable from
a set of independent or predictor variables. There are many different
types of models which can be created such as general linear discussed
in the following section, non linear, logarithmic, polynomial, reciprocal
and multiplicative. This research deals mainly with linear, polynomial
and logarithmic models.

Assumptions

Before any statistical inferences can be made and tests performed
on the significance of the coefficient estimates and the independent
variable, certain assumptions must be made about the data and about
the probability distribution of the random error.

The first assumption is that the data is a sample from the target
population. The second assumption is that the random variable e, the
error term, is:

(1) statistically independent

(2) identically distributed

(3) from a population with zero mean

(4) normally distributed
In other words, e~ N(O, 02) which means that ¢ is from a normal
probability density function with a mean of zero and a variance
of o2, Also, since nothing is known about the probability distributions

describing these error terms, the Central Limit Theorem guarantees that

6
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if we can assume independence, then the sum will tend to be normally
distributed. Also, if we can assume that all the error terms have identical
probability distributions, then we insure that each of them have the

same variance.

s Method of Least Squares

The general form of the linear least squares model is
Y'B°+lel+82X2+---+Bij+o..+Bka+E @8
where Y is the observed value of the dependent variable
xj is the observed value of the jth independent variable
8o 1s the constant term
Bj is the regression coefficient for the jth independent variable
€ 1is the random variable accounting for the error
k 1is the number of independent variables
' Note that Xj can be the transformation of an original observation.
For example, the Product of Powers model
Y=g, X lez B2 2)
can be transformed in a linear sense to
In(Y) = B, + B1 In(X;) + B2 In(Xy) (3)
or
" = g, + 8 X* + B2 Xo¥ (4)
where the "*" indicates the transformed variable in equation (4).
1f there are n dependent variables, equation (1) can be written:
Y; = By + B1X4) + B2X42 + ... + BjKij + ... + BkXik + €4 (5)

where i=1, 2, ...on




{ Since it is very difficult to discuss the multiple regression case
in algebraic terms, matrix notation will be used. Equation (5) can
be written as:

Y=XB+¢e (6)

where Y represents an n-element column vector of observed values of the

dependent variable:

(7)

M<,..r4
=] N =
.|

X represents an n x K + 1 matrix. The first column contains
all ones representing the constant term. The other columns represent

the Xjj values:

1 X X1+« + Xg
r 1 X751 X2 . . . Xox
X= . . . . (8)

1 X1 %2 - - XK

B represents a K+ 1 x 1 column vector of regression coefficients:

8o
B1
B = B2

. (9

Bk
L -

2. Al >

T g g T Sy o—— = - - —
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€ represents the n-element column vector of error terms:

F’el'

€2 (10)

€ = .

€n

The objective of the least squares technique is to fit a line
through a set of data points so that the sume of the squared differences
between Y4 (1 = 1, 2,...,n), the actual values of the dependent variable,
and ii, the estimated value of the dependent variable, is minimized.

§ is defined algebraically as:

1}1 = Bo + By Xy1 + B2Xp + ByXg5 + ..o + BiXy (11)
or in matrix notation as:
} Y =x8 (12)
The random error term ¢ is the difference between Y and i_and can

be written as follows:

>

g=1- (13)

A two-dimensional graphical depiction of a regression line using
three data points is shown in Figure 1.

The ideal situation is to have each of the error terms equal to
zero. That way, the regression model would fit the data points exactly.
In most cases, however, this is not possible so minimizing the sum of

;
; the error terms is the best solution. 1In order to keep the mathematics
|

relatively easy, the error terms are made positive by squaring each term ‘




before summation. This sum of squared errors (SSE) can be written as:

n
SSE =L (eg)2=¢' ¢ (14)
1=1

where g¢' is the transposed matrix €. The objective can now be stated
as follows:
Find 8 to minimize:
SSE=c' e=(1-1' -1 = (-X)' (L-X) 15
Using a straightforward application of Lagrange's Multipliers on

equation (15), one estimator of f which minimizes SSE is:

B = (X' X'y (16)
Y
€3
Y = 8, + B1X;
X1 X, X3

FIGURE 1 Regression Line

10
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It is known, however, that a regression model containing these
estimates of B will not explain all of the variability in the
dependent variable Y. Some of the variability in Y will be explained
by the regression model and the remaining portion is left unexplained.
This idea can be stated as follows:

SST = SSR + SSE (17)
where  SST is the total sum—of-squares or the total variability in

the dependent variable and is defined as:

n n
SST = £ (¥3-D2= 1 Y}-n¥f (18)
1=1 i=1

or

- Y'Y -n¥2
SST 'Y -n ¥ (19)

SSR 1is the regression sum-of-squares or the variability ia

the dependent variable explained by the regression model and is defined as:

n -
SSR = I (Yy-9)2 (20)
1=1
or
SSR = B' X' Y - n¥2 (21)

SSE is the residual or error sum-of-squares or the remaining
amount of variability which is left unexplained and is defined by
equation (15).

Measures of Merit:

Since SST depends only on the values of the dependent variables,
Y4, it is constant for any given set of n observations. Also, since
SSE is being minimized, this makes SSR as large as possible. It is
then reasonable to assume that the ratio of SSR to SST would be an

adequate indicator of the goodness of fit of the model to the data
11
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and a good measure of merit of the regression. This ratio is denoted as
R%, or simple as RZ, and is called the coefficient of determination or

the multiple R-squared value.

2 _ SSR _ . _ SSE 2
R ST l-3g 03 Bl (22)

According to Theil [35:178], the sample value of R? is somewhat
biased due to the degrees of freedom used in its calculation. Theil
suggests that a better measure of merit is iz, defined as the adjusted
multiple correlation coefficient.

%2 = 1 -~ (1-R2)( Bzl
R =1 (lR)(n_k) (23)

or

R2= 1 - (1-R?) (%}};_J (24)

if a constant term is included in the model, or equivalently as

=20 p2_ (1_n2y | k=1
R®= R°- (1-R%) (n-k-l> (25)

In either of the cases above, R® is always less than or equal to RZ.

It must be noted, however, that R%is not an unbiased estimator, though
it still has some merit because when the number of variables being
estimated, k, becomes large compared to the number of observations or
data points, n, it still gives an optimistic picture of the amount of
variability in the dependent variable explained by the regression model.

R? can also be defined as:

=2 MSE
R = 1 ST (26)
where MSE, mean square error = SSE
’ n-k-1
and MST, mean square total = %g%

Thus, MSE = MSTx (1-R2), and minimizing MSE maximizes R2.

12




Mosier [26] has suggested a measure of merit similar to R2which

measures the predicting power of a model. Based on a model using the
original set of old data (Phase I), the estimated value for each data

point, Y4, was calculated. The cross validation SSE (c.v. SSE) was
n ~

then calculated by the following equation: c.v. SSE = I (Yy - Yi)z,
i=1

where the Yjs are the actual (observed) values from the new set of

o e e s

data (Phase II). Notice that the c.v. SSE is not the same as SSE
because both Yj and Y; did not come from the same sample. j

The c.v. SSE is then used to calculate the cross validation R?

c.v, SSE
SST ‘

power of the old models on the new data.

by c.v. R =1 - Here, c.v. R? indicates the predictive

13 ) J
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IIT Review of Past Research

There is a considerable amount of literature examining the many
efforts that have been made to determine the "best" subset of independent
variables that should be included in a regression model so that the ﬁ
amount of unexplained variance in the dependeﬁt variable is reduced.
Many criteria for selectifon of these variable subsets have been examined, |
yet no one best criterion has been found. A
Draper and Smith [10:163] point out two conflicting viewpoints
on this subject. At one extreme, all variables could be included in
the model for predictive purposes, however, though the values predicted
may be reliable, as the pumber of variables in the model approaches the
number of data points or observatioms, RZ? will naturally become close
to one, thus implying a false sense of importance of the model to the
unexperienced analyst.

At the other extreme, the model could include as few variables
as possible so that the predictions are still reliable and the costs of

maintaining and updating the data base is kept at a minimum. A

compromise between these two viewpoints i3 suggested and is considered

to be the "best" approach. '
One would like to examine all of the 2k possible regressions of

the dependent variable in the search for the best equation, however,

not only would there be computational and time limitations on the

computer which make this approach impractical, but there is the

remaining problem of specifically defining what is meant by the "best"

regression model and when it has been found. This chapter reviews

some of the research that has been done in this subject area.

14




Probably the most well known research on the subject of variable
gelection and regression analysis is that of Draper and Smith. Four
different regression approaches have been devised including all
possible regressions, backward elimination, forward selection, and
stepwise regression. 1

In the All Possible Regressions technique, all 2k possible
regressions are considered. Thus a ten variable model would require
the examination of 2!0 or 1024 possible regressions. Each model is A
ordered by some criterion such as R% or R? and compared. Often for
large data bases, it becomes necessary to compute the residual mean
square error and assess its magnitude to determine the best cut-off
point for the total number of variables in the regression.

Recent research by analysts such as Schatzoff, Tsao, and Fienbert [31]
have been able to reduce the number of calculations required from an
order of k3 to k2, thus making this technique more practical, yét still
relatively expensive to use. However, if the number of variables was

reduced by methods such as the Chow test developed by Gregory Chow [7],

this method becomes even more practical.

In the backward elimination method, a regression equation containing
all possgible variables is used as a starting point. A partial-F value
is calculated for each variable and if a value is less than some
specified tabular value, then that variable is removed from the model.
Once a variable is removed from the model it is not susceptible to
further consideration. A new regression is them computed and the ‘
process continues until no more variables can be eliminated from the
model. Although this method is not thought of as the most powerful

15




methods to use in determining the best regression equation, Mantel [23]
supports the method and points out its many advantages.

The forward selection process operates in a reverse manner from
the backward elimination procedure. Variables enter the model one at
a time until a model has been satisfied. Initially, partial-F
statistics and partial correlation coefficients are calculated between
each independent variable and the dependent variable. The variable
most highly correlated will enter the regression equation. A new
regression equation is then calculated and the process continues. Once
a variable has entered the regression equation, there is no chance that
it will be removed. This, however, is one of its faults. There is no
attempt to determine the effect an entering variable has on the existing
variables in the model.

In the stepwise regression procedure, however, an examination is
made at each stage of inclusion of variables in the model to determine
whether any variable or set of variables introduced previously lose
their significance due to the introduction of a new variable. Thus,

a variable which entered at an earlier stage,yet has been found

unimportant due to the inclusion of a new variable,will be detected
and removed from the model. For this reason, the stepwise procedure
has been determined to be the most powerful regression technique.

In discussing various regression procedures, there are three
important points that need mentioning. The first point is that the
order of inclusion of the variables in the model is irrelevent. Thus,

a variable which entered early in the model does not mean that it is

more important than a variable which entered later. The second point

16
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is that there is no guarantee that any of the previous methods will
arrive at the best regression model. The third point is that there is
also no guarantee that each of the previous methods will arrive at

the same model or subset of variables. This 1s true between any set
of regression procedures.

There are many more criterion for selecting variable subsets
other than R% or the partial~F statistic. The remaining portion
of this chapter 1s dedicated to mentioning those various research efforts.

Aitken [1] discusses the use of the Mean Square Prediction Error
(MSPE) as a criterion for selecting variable subsets if the regression
equation is used for prediction purposes rather than description purposes.
In the later case, he prefers the use of the conventional R? value as
a criterion. Allen [2] also discusses the use of the MSPE for selecting
variable subsets.

The MSPE is defined as the expected value of the squared difference
between the actual value of the independent variable, Y, and the
estimated value, %. If all dependent variables are used in the regression
equation, Aitkin defines the MSPE as follows:

MSPE = E[Y-§]2 = 02[1':—1+ (X = %" Sy -] 27

where X is a row rector of x,‘g is the vector of means, and S, 1is the
matrix of cross products of the k independent variables: Sgyx = X'X.
Allen defines the MSPE as follows:
MSPE = E[Y - Y] = o2 + Var(‘}) + [E(§) + X g]2 (28)
where the last term is the squared bias of prediction and the last

two terms together are the Mean Square Error (MSE) of Y.

17




Since the least squares predictor § is unbiased, its variance is
E(X'X)—1§ g2. 1If the last term is dropped, one gets:

MSPE, = g2 + x (X'0) " Kk o2 (29)
which Allen uses for the comparison of other predictors.

Kennedy and Bancroft [22] discuss using the average value of the
MSPE over their sample as a criterion:

uspe = X 121 2 12 4 -5 (g - D] (30)

2
= %f (n+k~1)

where X has been assumed to follow a uniform distribution. Aitken,
however, believed it more realistic to assume that all X values were
independently and identically distributed. In either case, the
objective is to chose the variable subset which minimizes the MSPE.
If the subset of variables to be tested i1s specified in advance or
simply fixed, the testing hypothesis becomes:

H, : MSPE - MSPE! > 0

(31)

Hy : MSPE - MSPE < 0
where MSPE! is the MSPE of the variable subset. If the null hypothesis,
H,> 18 not rejected, this means that the subset of variables is not
statistically different from that of the total set of data and the
subset may be considered for use in a prediction equation. A non-
central F-gtatistic and test have also been developed by Aitken to
estimate (31) depending on the assumed distribution and selection
process of the independent variables. In the cases where the variable
subsets are unknown, a simultaneous procedure, similar to the forward
selection process developed by Draper and Smith, was developed by
Garland ([15]. 1In this procedure, variable subsets are chosen based on

a central-F approximation to the multiple correlation coeffictent.
18
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Helms [16] discusses the use of the Average Estimated Variance
(AEV) as a criterion for comparing competing linear models and explains
why the Integrated Mean Square Error (IMSE) used as a criterion is
not very useful in practice. The technique includes the computation
of the AEV for each possible regression and the implementation of a
stepwise procedure using the AEV as a criterion rather than R? or
Mallows' C, statistic. One advantage of the AEV has over R? and Cp
is that it automatically incorporates information about the tradeoff
between bias and variance when one enters or deletes variables in the
model.

Furnival and Wilson [13] discuss a technique for computing the error
sum of squares (SSE) for all possible regressions with minimal amount
of calculations, and show how it is implemented in a branch and
bound technique which they refer to as the Leaps and Bounds technique.
This technique is useful in determining the best subset, and without
examining all the possible subsets of variables.

The fundamental principal upon which their research is based is
that SSE(A) < SSE(B) where A 1s any set of independent variables and
B 1s a subset of A. In other words, it is impossible for any subset
of A to have a lower error sum of squares than A. Because of this,
SSE(A) can be used as a lower bound in the analysis which means that
subsets of A can be ignored in the search for the best given numbered
variable subset.

In their technique, two search variations are described: horizontal
and vertical. The horizontal variation explains regressions in a

probability tree form and in a conventional or natural order so
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that all one variable regressions, two variable regressions, etc. are
easily observable., These regression trees are formed by beginning
with all k variables in a regression and branching out on all possible
k-1 variable subsets. The value of SSE is computed for each of the
subsets and the subset with the smallest value will be the "best"
k-1 variable subset. That subset will not be divided further as it
provides a minimum value for that branch. Branching occurs elsewhere
in the same manner as above until the best possible k-2, k-3, ..., 1
variable subsets are chosen.

Criterion for selecting these variable subsets is based on either
R%, R2, or Mallows Cp statistic. In a similar fashion, Narula and
Wellington {25] introduce a branch and bound algorithm using the
Minimum Sum of Weighted Absolute Errors (MSWAE) as a criterion for
selecting variable subsets and involves the use of linear programming
to minimize the sum of the absolute values of the residuals subjected
to several constraints.

Andrews [4] discusses the use of regression and model building
by medians and also introduces a robust method of analyzing data
assumed not to have a Gaussian distribution with errors of equal

variances.

Webster, Gunst, and Mason [37] discuss a modified least squares
estimation procedure using latent roots and latent vectors of the
correlation matrix of the dependent and independent variables. This
has been found to be very useful when the matrix of independent
variables is nearly singular.
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In a more recent article, Park [29] discusses a strategy for
selecting subsets of variables from a given linear mixture model
developed by Scheffe [32], and applies the MSE as a criteria for
screening the variables for model reduction.

In another recent article, Ellerton [ll] investigates a method
of applying linear programming to determine whether a given subset
of variables is adequate in a regression model.

Surprisingly enough, very little cross-communication has been
done concerning this very important subject, and I believe a
joint analytical effort should be made testing these various criteria
against various data bases in order to determine if there is cne

best method or criterion useful in predicting variable subsets to

be used in a regression model.




IV Model Development and Selection of Variables

The Westinghouse Data Base

Senior engineers from Westinghouse collected most of the data in
both Phase I and Phase II from on site visits to the Pentagon,

AFLC Headquarters, ATC Headquarters, four Air Logistic Centers (ALCs),
and several Air Force bases. While on site, interviews were conducted
with technicians to verify the appropriateness of the LRUs originally

selected and to identify possible alternatives.

At the completion of the Phase II data collection, the resulting
data base contained 134 LRUs (See Appendix A), and thirty-three elements
(variables plus indicators per LRU) (see Table II). After various
variable transformations and modifications, twenty variables remained.

The first set of variables describe the aircraft type and avionics
area and are indicators (zero or one). Three aircr-aft types including
fighter, bomber and cargo and three avionic areas including sensory,

communication and navigation were initially coded as follows:

Bomber 1 0
Cargo 0 1
Fighter 0 0
Sensory 1 0
Communication 0 1
Navigation 0 0 ,

After additional investigation, the following set of indicator
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TABLE II

Westinghouse Data Base Elements

1.
2.
3.
4.

6.

7.

8.

9.
10.
11.
12.
13.
1l4.
15.
16.
17.
18.
19.
20,
21.
22,
23.
24.
25.
26.
27.
28,
29.
30.
31,
32,
33.
34,
35,

Bomber indicator variable (1 indicates Bomber aircraft)
Cargo indicator variable (1 indicates Cargo aircraft)
Sensory indicator variable (1 indicates semsory avaionics)
Communications indicator variable (1 indicates comm avionics)
Unit Price

Volume (in3)

Weight (1bs)

Component Count

Percentage Digital Components

Percentage Analog Components

Percentage Electro-Mechanical Components

Percentage Power Supply Components

Percentage Transmitter Components

Percentage Solid State Components

Power Dissipation (watts)

Utilization Factor (Operating hours/flying hour)
Percentage Failures Detected by Automatic Test (BIT/FIT FACTOR)
Number of Integrated Circuits

Number of SRUs in the LRU

Mean Time (flight hours) Between Failures

Mean Time (flight hours) Between Maintenance Actions
Maintenance Manhours - Scheduled (Organizational)
Maintenance Manhours - Unscheduled (Organizational)
Maintenance Manhours - Shop (Intermediate)

Logistic Support Cost - Field

Logistic Support Cost - Special Repair Center (Depot)
Logistic Support Cost - Packaging and Transportation
Logistic Support Cost - Condemnation Replenishments
Training Costs

Percentage LRUs Not Repairable This Station (ZNRTS)
Flying Hours (FH) (to normalize MMH and LSC)

Percentage Condemned LRUs

Specialized Repair Activity (Depot) Costs

Quantity per Assembly

Flying hours (to normalize Training costs)




variables was used in the regression analysis to denote interactions
between aircraft type and avionics area:
LRUs in fighter aircraft navigation systems
LRUs in fighter aircraft sensory systems
LRUs in fighter aircraft communication systems 1
LRUs in bomber aircraft navigation systems
LRUs in bomber aircraft sensory systems

LRUs in bomber aircraft communication systems

s

LRUs in cargo aircraft navigation systems
LRUs in cargo aircraft communication systems
LRUs in cargo aircraft sensory systems were not included. The above

set of indicators is coded as follows:

Fighter-Navigation 1 0 00 0 00
Bomber-Navigation 010 00 00O
Cargo-Navigation 0 01 0 00O
Fighter-Sensory 0 001 0 00O
Bomber-Sensory 0 0001 0O
Fighter-Communication 0 0 00 010
Cargo-Communications 0O 0 0 0 0 0 O

The next four independent variables are measures of physical
characteristics. The Unit Price is measured in 1976 dollars per LRU
and ranges in value from $153 to $220,943. The Volume is measured
in cubic inches and ranges in value from 30 to 8200. The Weight
is measured in pounds and ranges in value from one pound to 8200 pounds. ‘
Component Count is the number of electronic components and ranges in
value from none to 7638.
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The next five independent variables are categories of the
different component types including Digital, Analog, Electromechanical,
Power Supplies, and Transmitter, and are measured as a percentage of
the total number of components having that characteristic. All
values range from zero to 100 percent,

The next independent variables, Fraction Solid State, and the
number of Integrated Circuits in each LRU are measures of LRU
technology, the later ranging in value from zero to 4625.

The sixteenth independent variable is a measurement the Power
Dissipation and is defined as the input power minus the transmit power,
and ranges in value from six to 1640 watts.

The next independent variable represents a percentage of failures :
in LRUs detected by the Built-In-Test/Fault-Isolation-Test (BIT/FIT).

The last two independent variables are the Specialized Activity
(Depot) Costs and the Quantity Per Assembly.

Westinghouse also identified several dependent variables. These
include the Mean Time Between Failures (MIBF), the Mean Time Between

Maintenance Actions (MIBMA), the Total Maintenance Man Hours per

Operating Hour (MMH-UNS/OH), the Maintenance Man Hours in the Shop
per Operating Hour (MMH-SHOP/OH), the Total Logistic Support Costs
per Operating Hour (LSC-TOT/OH), the Field Logistic Support Cost per
Operating Hour (LSC-FLD/QH), the Training Costs per Operating Hour
(TRAIN/OH), and the percentage of LRUs not repairable this station
(NRTS) .

Only one of the dependent variables mentioned above will be used
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in the analysis; LSC-TOT/OH. A list of all the variables used in
this report and previous reports is contained in Table III.

Previous Models

In this section, five previous models (two developed by
Westinghouse and three developed by Pulcher) are discussed.

The first Westinghouse model (Table IV) was based on the Phase I
data and second (Table V) was based on the Phase II data. All
variables in the first model are in linear form, quadratic form or
logarithmic form.

The three models developed by Pulcher are described in Table VI
and Table VII. Initially, Pulcher was able to create ninety-seven

variables from the Product of Powers model of the form:

13 6 6 13
In¥=ao+ £ aiDjy + L Bjoln X4 + I z Bji Djln X4 (31)
i=1 j=1 j=1 1=1

The Dj are indicator variables, and their function is to allow
for coefficients to be different for subpopulations. For a simplified
example, suppose we had:

In Y = 0o + a1Dg + B871nX; + B11DilnX; (32)
For the subpopulation for which Dj = 0, the model is:

In Y = a5 + B11nX; (334)
while for the subpopulation for which Dy = 1, the model is:

In Y = (ap + 1) + (B1 + B11) 1nX3 (33B)

Since there were only 63 data points, a method was needed to reduce
the number of variables. Pulcher chose the Chow Test (also called the

Test of Equality Between Subsets of Coefficients in Two Regressions),
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TABLE III

List of Variables - Abbreviations

Name Westinghouse | Pulcher | This Report
Bomber IBOM * BOMBER
Cargo ICAR * CARGO
Sensory’ ISEN * SENSORY
Communication ICcoM * COMM
Navigation-Fighter * * FGTNAV
Navigation~Bomber IBMNAV * BOMNAV
Navigation-Cargo * * CARNAV
Sensory-Fighter * SF FGTSEN
Sensory - Bomber * SB BOMSEN
Communication -~ Fighter IFGCOM CF FGTCOM
Communication - Bomber IBMCOM CB BOMCOM
Communication - Cargo * coMMC CARCOM

Unit Price UP UP [0) 4

Volume v v v

Weight W W W
Component Count CcC cC cc
Component Density CcD * *
Power Dissipation PD PD PD
Fraction Solid State FSS % SS Ss
Fraction Digital FDI % DIG DIG
Fraction Analog FAN % AN AN
Fraction Electromechanical FEM Z EM EM
Fraction Power Supply FPS % PS PS
Fraction Transmitter RXR %z XMTR XMTR
Fraction BIT/FIT BIT/FIT BF BITFIT
Number of Integrated Circuits IC * IC
Specialized Repair *

Activity Costs SRA SRU
Quantity Per Assembly QPA * QPA
Logistic Support Cost/

Operating Hour LSC/oH LSC/0H LSC/0H
Maintenance Manhours/ . *

Operating Hour MMH/OR
Mean Time Between Failures MTBF * *
Mean Time Between Maintenance * %

Actions MTBMA
Training Cost/Operating Hour TRAIN/OH * *
Not Repairable This Station NRTS * *

* Not used in the analysis
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TABLE IV

Westinghouse Model - Phase I Data

1n (LSC/OH) = bo + ﬁ} by Xg
i=1
R? = .8916 RZ = ,9283 F-value - 25.3

i by X3 Partial-F
0 | -8.15108

1 3.86111 (IBOM-.2857142857) 36.0
2 3,66533 (ICAR-.2698412698) 31.4
3 -4.85271 x 10-1 (ISEN-.2539682540) 3.6
4 | -2,56663 (IBOM-.2857142857) (ISEN~.2539682540) | 37.2
5 | -1.66262 (IBOM-.2857142857) (ICOM~-.206349206) 12.2
6 | -7.67253 x 10-1 (ICAR-.2698412698) (ICOM-.206349206) 3.2
7 1.27356 x 10~2 FPS 6.8
8 2.25967 x 1072 (FAN=63.349) 36.0
9 | -7.42999 x 1073 (FSS~61.138) 9.0
10 2.38503 (UF-1.639 27.0
11 | -9.20384 x 10-11 (UP-133606.3) 2 25.0
12 | -1.52864 x 10~4 (W=-64.314)2 8.4
13 | -1.07105 x 10-3 (FAN-48.895) 2 33.6
14 1.20418 x 10-3 (FEM~46.991)2 33.6
15 7.10025 x 10~4 (FXR~40.172)2 10.9
16 | -1.61651 x 10~4 (FSS~51.898) 2 2.2
17 -1.11568 x 10-6 (PD-722.249)2 7.3
18 5.009996 (UF-1.681)2 42.2
19 1.70042 x 103 (BF-27.288)2 13.0
20 4.60293 x 10-1 In(UP) 31.4
21 2.35583 x 10-1 In(V) 4.8

T IR s ol A i 0
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TABLE V

Westinghouse Model - Phase II Data

18
ln (LSC/OH) = by + I byX;
1=1

R? = ,8827 F-Value = 41.0

i b i Xi Partial-F
0 | -6.97950

1 7.85143 x 10-1 IFGCOM 10.24
2 1.14876 IBMNAV 34.81
3 1.07719 IBMCOM 21.16
4 1.91500 x 10-1 CD 12.25
5 | -1.22007 x 10~2 FDI 37.21
6 | -1.72307 x 10-2 FEM 24.01
7 | -9.49029 x 10-3 FXR 4,84
8 | -8.36154 x 10-3 FSS 9.61
9 | -3.35635 x 10~4 (V-1333.0) 9.00
10 1.98641 x 10-2 (W=32.3) 17.64
11 6.72953 x 10-8 (V-3222.0)2 6.25
12 ~1.05350 x 10~4 (W-65.3)2 4.00
13 | -4.24991 x 10-8 (cC-2986) 2 5.76
14 | -4.36525 x 10-4 (FPS-45.48)2 9.61
15 7.79704 x 10-1 (UF-1.72)2 16.81
16 5.64131 x 10-1 1n(UP) 94.09
17 4.61602 x 10~1 1n(V) 8.41
18 1.47264 x 10~1 1n(PD) 6.25
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TABLE VI
Pulcher's SPSS Model ~ Phase I Data
R? = 0.95212 RZ2 = 0.92388 F = 33.72
In (LSC/OH) = ap + I agDy + I Bjo Inxy+ I I By3 D4 In xj
i j § 1

Variable No. Coefficient Partial F

1 0.402702 13.63

3 0.084548 0.10

5 0.412407 37.28

8 11.320694 23.80

10 -1.135445 17.68

11 ~1.457859 26.48

14 3.710527 7.25

16 -2.950970 9.44

17 -0.092716 0.09

20 0.322015 0.07

23 -0.568085 27.14

26 -0.729848 7.51

27 -1.803242 9.46

28 2.506829 12.27

63 -1.995969 18.20

64 3.034970 17.51

68 ~0.272142 7.44

70 -0.758240 8.11

75 . 0.294839 25.70

90 -0.456146 24,86

94 0.697895 25.90

96 -0.642736 43.88
Constant -5.315378 79.01 )
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TABLE VII

Pulcher's Leaps and Bounds Models - Phase I Data

In (LSC/OH) = ag + L a4Di + I Bjo Iln x4+ I I gysDf ln x4
1 3 i d

Cp Criterion R¢ Criterion

R? = 0.9135 R? = 0.9323

R? = 0.88347 R? = 0.9001

F = 31.21 F = 29,25

Variable Coefficient | Partial-F Coefficient Partial-F
up 0.245908 8.78 0.313871 14.52
W 0.384075 7.75 0.350494 6.86
SF -1.061926 12,78 -2.878942 14.29
SB -1.822390 30.26 -2.195891 39.06
DIG 4.381530 4.88
NF*W -0.431742 31.61 -0.343076 2.10
NF*CC -0.466254 13.70 -0.470354 15.84
NF#*PD 0.738901 16.62 0.672722 14.59
NC*UP 0.285409 5.13 0.254284 4.04
NC*v -0.334677 4,93 -0.292486 3.92
SF*CC 0.293229 6.30
DIG*UP ~-0.584870 12.86 -0.950128 11.70
DIG*V -0.971576 2.25
DIG*W 2.676919 4.93
DIG*PD 1.081951 15.97 0.553008 2.59
AN*Y 0.309271 16,60 0.239272 9.98
EMAW 0.698175 13.89 0.705835 13.47
EM*PD -0.555855 21.58 -0.545678 20.61
BF#y 0.866668 28.67 0.828916 27.04
BF*%SS -0.701034 37.03 -0.706378 38.19
Constant -3.855040 53.44 -4.091618 64.16

All other coefficients are zero.
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which prescreens the variables and eliminates those which are unimportant.
The Chow Test also determines which subpopulation really had different
coefficients. Sixty variables remained and were used in conjunction
with the three models,
A stepwise regression procedure using SPSS was used to develop
the first model and the Leaps and Bounds Algorithm was used to create the
second and third models, the second using B2 as a criterion for selection
and the third using Mallows' Cp -statistic as a criterion for selection.
All three of these models did a very good job of predicting the old
data as determined by the R? value, however, in his final conclusion,
prediction intervals were computed using the Omnitab computer package [20],
and it was determined that both the Leaps and Bounds Cp and the Leaps and
Bounds R2 model did a better job of prediction than the SPSS model.

Automatic Interaction Detection

It has been suggested that another method of prescreening variables
prior to regression is the Automatic Interaction Detection (AID) computer
package developed at the University of Michigan's Institute for Social
Research and documented by Sonquist and Morgan [33,34]. This teclnique
is primarily used in constructing models on sociological or categorical
data and involves a single interval scaled criterion variable and a
mixture of interval, ordinal, and nominally scaled predictor variables.

A typical problem in regression analysis is that one cannot always
know in advance which transformations such as X§ or 1n(Xj), or interaction
terms such as xixj to introduce in the model so that the predictive

power of the model is maximized. A larger error term reported in much
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of today's research may be partly due to the way in which these predictor
variables are combined in the model, and it is this problem of locating
specific interaction effects between variables, if in fact they do

exist, that is the basis for this investigation. Since AID also
determines the variables most important to the model, its main purpose

in this investigation will be as a screening device to locate those
variables most important to the regression model, thus reducing the
number of possible vartables considerably.

AID Algorithm and Objective

The AID analysis is somewhat of a branch and bound procedure using
analysis of variance technique that is useful in studying the inter-
relationships among a set of variables and useful in maximizing
the predictive power of a multiple regression model. Unlike most
multiple regression procedures, linearity and additivity assumptions
are not necessary requirements in the AID analysis.

The AID algorithm accomplishes a sequential division of the entire
data into subsets based on that split which causes the greatest
reduction in the unexplained variability of the criterion variable.

On the first iteration, the entire data base is split into two groups
around that variable which allows for the minimum within-group
variability measured by the sum of squared deviations of the criterion
variable from the group means. On each successive iteration, one of
the existing groups is split in the same manner as in the first step.
This process continues until one of the stopping criteria has been

satisfied.
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The AID model can be written as:

Ypi * ui + €y 2,.0.40 (34)

where: Y, is the mtP criterion variable observation in group 1

uy is the ith group mean

emi 1s the random error of the mth criterfon variable observation
in_group 1
This random error term has the same assumptions as the random error term
€i which was discussed in Chapter II.

An estimate for ui is §i’ the sample mean of the observations in

group i. Letting Y be the sample mean for the criterion variable, the
total variability in the criterion variable (in AID notation) can be

stated as follows:

g n -
TSST= I I (Ypi - N2 (35)
1=1 m=l

This value will be constant for any given set of n observationms.

Equation (35) can be expanded to:

g n - g n = . 2 g o, _ 2
I I (Upg-y=I I @yu-Tp% I I (-2 36
i=1 m=1 i=]1 m=1 i=l m=l

or: TSST = WSS + BSS

where: TSST is the total sum-of-squares for the entire sample
WSS is the within-group sum-of-gquares
BSS is the between-group sum-of-squares
The ;ast term can be simplified to:
BSS = % ng I3 - N2 37
i=1
The objective of the AID algorithm at each iterative step 1is to

split the groups so that BSS is as large as possible thus making WSS
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as small as possible. A good measure of the goodness of the resulting

BSS* 2
R? = TSST 0<R<1 (38)

where BSS* is the BSS of the existing groups. As in the multiple

model is:

regression case, the R? value indicates the fraction of the variability
in the criterion variable explained by the regression equation. 1In
AID, an R2 value close to one indicates that the splitting process has
done a good job of grouping observations with nearly identical values
of the criterion variable,

At each split, equation (34) can be written as:

TSSt = WSS; + BSSi - (39)

Using this notation, the AID algorithm at each iteration can be
generalized as follows:

(1) Select that unsplit sample group which has the largest total
sum-of-squares around its own mean as a candidate for further splitting.

(2) Por each predictor variable, find the subset of observations
in the group selected in Step 1 which maximizes BSS; (or minimizes WSSy).

(3) Chose the best partition of observations on a predictor and
split the group using that predictor variable.

(4) Repeat Step 1 until a stopping criteria has been satisfied.
The logic of the AID algorithm can be easily summarized in a flow
diagram developed by Gooch [14] and simplified by McNichols [25] in

Figure 2,
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— NO -

Select subgroup with largest TSSy

a. Check for minimum group size
b. Check limits on minimum TSSy

v

Further Splitting Possible?

Yes

For each predictor wvariable:

a. Find the criterion mean for
each predictor value.

b. If nominal variable, sort
predictor values by
criterion mean.

c. Find BSS values for splits
between adjacent predictor
values.

d. Select best split (MaxBSS)
for this predictor

2

Select best split overall predictors.
Perform split if resulting groups are
large enough. Output iteration

results.

Print Split Summary and AID trees

FIGURE 2 Logic of the AID Algorithm
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Stopping Criteria

There are four important stopping criteria used in the AID algorithm
which are indicated by the user.

(1) The maximum number of final groups including those which can
and cannot be further split cannot exceed the value MAXGP or termination
will occur.

(2) The number of observations in each group that is split cannot
be less than the value NMIN,

(3) The total sum of the squares in a group, TSS;, cannot be less
than Pl percent of the total sum of squares for the entire sample, TSST.
Numerically speaking, Pl < TSSi/TSST.

(4) Any split must reduce the original within group sum of squares
by P2 percent or the AID algorithm is terminated.

Gooch suggests that:

Pl > .01

P2 > .005

MAXGP < 90

NMIN > 5% of the total number of observations

Analysis of the AID Output

One of the main features of the AID package is the three diagram
which graphically describes the splitting process of each of the groups.
The structure of these trees is very important in determining the nature
of the variable interactions in the model.

Sonquist and Morgan describe two basic structures or shapes of
the trees, the trunk-twig structure, and the trunk-branch structure.

The truck-twig structure allows only one of two groups split to be split
again. The group that is not split is classified a final group.
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There are three basic types of trunk-twig structured trees: top
termination, bottom termination, and alternating termination (See
Figure 3), The top termination structure is referred to by Sonquist
as an "alternative advantage" model, where the nature of the advantage
1s determined by the characteristic which split the group. In this
structure, those groups in the upper branches always have a higher
mean value than the lower branches, and once formed, these upper branches

cannot be split any further.

®

(:> a. TOP TERMINATION

o~

®

9 o ) b. BOTTOM TERMINATION

(1) G) c. ALTERNATING
TERMINATION

()
Q

()

FIGURE 3 Trunk-Twig Structured AID Trees
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Sonquist refers to the bottom-termination structured tree as an
"alternative disadvantage" tree, where the nature of the disadvantage is
determined by the characteristic which split the group. In this case,
the lower branches once formed, cannot be split further.

In the alternating termination structure, the interpretation can
be viewed as a combination of the two preceding structures whereby the
importance of a split depends solely on the characteristics of the
variable which split the group.

The trunk-branch structure is analogous to the trunk-twig structure
except that each group split is a candidate for further splitting. This
type of tree structure is typical of the first few splits in any AID
tree. Once the first few splits on a group have been made, the structure
usually exemplifies that of the trunk-twig structure.

Besides the structure of the tree, the symmetry of the tree, or
lack thereof, concerning the extent to which the same variables appear
in a split on wvarious trunks is important also. Non-symmetry implies
that an interaction exists. Also, if a variable 1is split on one trumnk
and shows no indication of reducing the predictive power in another
trunk, then there is a clear evidence of an interaction effect between
that variable and those used in the preceding splits. The predictive
power of each variable in a group is evaluated by the statistic BSSy/TSSj
and is shown on the selected AID output in Appendix D. This statistic
represents the proportion of the variation in the group to which the
predictor variable is being applied that would be explained if that
group were split.
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Preparation for the use of AID

In order to use the AID computer package, several important steps
had to be followed. PFirst of all, the data had to be transformed so that
an integer format could be used to describe each data element in a six
place field. Since many variables were calculated to as many as 13
decimal places, those variables had to be multiplied or divided by a
specified factor of 10 and then truncated. For example: LSC/OH was
multiplied by 10% then truncated, so LSC/OH(27) = 26.63122286176 became
266312.

It is possible that by reducing the number of significant places,
round off errors and non-comparible values would result,

Secondly, all data points for each variable had to be sequentially
ordered and placed into groups or categories of equal size. (See Table VIII)
This is done so that when the groups are split by AID, each mean will be
stable with respect to the elements in that group.

After the data is transformed to the proper form, the computer
deck can be formed. The itemized input 1is described in Appendix C.
Results

As stated earlier, the important parameters in the AID input are
P1, P2, NMIN, and MAXGP. Many attempts with various combinations of
these parameters were made and are described in Table IX.

In the first four runs NMIN was set to 4, which means that no
groups will be split unless there are at least 8 data points in that

group (4 for each subgroup split).
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TABLE VIII

Sequential Ordering of Variables

Variable

No.

~ Recode

FGTNAV

BOMNAV

CARNAV

FGTSEN

BOMSEN

FGTCOM

BOBCOM

UNIT PRICE

VOLUME

WEIGHT

COMPONENTCOUNT

10

11

= o = O = o = Qo = O

HSLN=O DPWNE=O WNHFHO [l =] = O

HWNPHO

&
-

LESS

THAN
1 OR OVER

LESS THAN

1 OR OVER

LESS THAN

LESS

LESS

LESS

LESS

LT.

LT.

LT.

LT.

1 OR OVER

THAN
1 OR OVER

THAN
1 OR OVER

THAN
1 OR OVER

THAN
1 OR OVER

OR EQ.TO 2241
2242 TO 3914
3915 To 8410
8411 TO 19274
19275 OR OVER

OR EQ. TO 275
276 TO 560
561 TO 1377

1378 TO 1734
1735 OR OVER

OR EQ. TO 850
851 TO 1500
1501 TO 3600
3601 TO 4900
4901 OR OVER

OREQ. TO 88
89 TO 399
400 TO 911
912 TO 1186
1187 OR OVER




TABLE VIII (Cont'd)

Variable No. Recode
PERCENTDIGITAL 12 0 LT. OR EQ. TO 50
1l 51 TO 440
2 441 TO 550
3 551 TO 870
4 871 OR OVER
PERCENTANALOG 13 0 LT. OR EQ. TO 240
1 241 TO 740
2 741 TO 750
3 751 TO 990
4 991 OR OVER
PERCENTEM 14 0 LT. OR EQ. TO 5 1
1 6 TO 20
2 21 TO 140 -
3 141 TO 760
4 761 OR OVER
PERCENTPS 15 0 LT. OR EQ. TO 5
1 6 TO 80
2 81 OR OVER
PERCENTXMTR 16 0 LT. OR EQ. TO 100
1 101 TO 190
2 191 TO 250
3 251 OR OVER
PERCENTSS 17 0 LT. OR EQ. TO 230
1 231 TO 860
2 861 TO 975
3 976 TO 995
4 996 OR OVER
POWERDIS 18 0 LT. OR EQ. TO 60
1 61 TO 150
2 151 TO 270
3 271 1O 500
4 501 OR OVER
BITFIT 19 0 LT. OR EQ. TO 5 4
1 6 TO 40
2 41 TO 130
3 131 OR OVER




TABLE VIII (Cont'd) ﬂ
Variable No. Recode
IC 20 0 LT. OR EQ. TO 1
1 2 TO 5 F
2 6 TO 77
3 78 OR OVER
SRU 21 0 LT. OR EQ. TO 3
1l 4 TO 9 4
2 10 To 12 A
3 13 To 16
4 17 OR OVER
QPA 22 0 LESS THAN 2
1 2 OR OVER
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TABLE IX

Result of AID Runs

Run Number
Parameters 1 2 3 4 5 6 7 8
Pl .015 .01 .0015{ .001 .005 .015 .0l .005
P2 .015 .01 .0015] .001 .005 .005 .005 .005 ,1
NMIN 4 4 4 4 3 3 3 5
MAXGP 30 30 30 30 30 30 30 30
R? .617 .617 .683 .683 .694 .689 .694 .596
Variables*
\ X X X X X X X X
AN X X X X X X X X
1} X X X X X X X X
cc X X X X X X X
CARNAV X X X X X X X
XMTR X X X X X X
PD X X X X X X
Up X

* Those which AID determined.
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This value was lowered to 3 in the following 3 runs. Notice that
when NMIN was increased to 5 in run number 8, R2 decreased from .694
in run number 8 to .596. So indeed, these parameters are important
in modeling decisions.

The two best runs (based on highest R? values) were runs 5 and 7,
where number 7 contains three parameters recommended by Gooch. Run
number 7 was chosen as the test case to build the regression model
used in this research and two approaches were developed from this run.
The AID tree and results for run number 7 are described in Figure 4
and Table X.

Since the main objective of using AID is to reduce the total
number of variables used and only choose those which are most important
to the regression, a choice can be made as to where to stop considering
variables for analysis purposes.

If the analysis is stopped when N reaches 4, then three variables
remain: V, W, and AN. Considering interaction terms or cross produce
terms, six variables can be used: V, W, AN, V-W, V.AN, and W-AN.

Another choice would be to stop considering variables for analysis
when N reaches 3. In this case, 7 variables remain, V, W, CC, PD, AN,
XMTR and CARNAV. AN and XMTIR can be considered partial indicators
in the sense that they can be represented as indicators (0 or 1) where
zero indicates that AN or XMIR equals zero and the value one indicates
that AN or XMTR is greater than zero. These indicator variables
are referred to in the analysis as IAN and IXMTR. CARNAV is a pure
indicator (either 0 or 1). 1In this case it was decided to use

interaction terms between the first six original variables and the
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Figure 4 AID Tree for Run No. 7
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TABLE X

AID Tree Results for Run No. 7

GROUP | VARIABLE| RECODE MEAN STD. DEV, N | R?
1 - - 13687.90 15871.88 | 63 | -
2 \ 0 1 2 6708.97 7352.77 | 38 | .294
3 ' 3 4 24295.88 19133,53 | 25 | .294
4 AN 1 3 &4 11667.33 9052.37 9 | .435
5 AN 0 2 31399.44 19640.68 | 16 | .435
6 cc 1 3 4 25506.08 9193.78 | 12 | .540
7 cc 0 2 49079.50 29540.98 4 | .540
8 %) 0134 4040.72 4309.02 | 29 | .595
9 W 2 15306.67 8460,32 9 {.595
10 CARNAV 0 21670.25 9449.06 8 |.617
11 CARNAV 1 33177.75 4745.71 4 | .617
12 cc 2 4 6328.60 3030.33 5 | .638
13 cc 1 3 18340.75 9629.98 4 | .638
14 AN 3 4 6313.67 1385.32 3 |.661
15 AN 0 1 2 19803.17 6763.90 6 |.661
16 PD 4 17311.25 7900.37 4 | .670
17 PD 2 3 26029.25 6508.13 4 | .670
18 XMTR 01 2957.56 3052.07 25 | .684
19 XMTR 2 3 10810.50 4820.07 4 | .684
20 PD 1 4 16137.67 4832.67 .689
21 PD 2 23468.67 6417.00 .689
22 W 1 3 943.50 670.84 | 12 |.694
23 W 0 4816.69 3208.98 | 13 | .694
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three indicators variables. A total of twenty-three variables are
created in this case. A list of both sets of variables created in
this case are listed in Table XI.

In order to decide which model should be used, each set of
variables was run through the IMSL-RLEAP (Leaps and Bounds) program
described earlier. Using R? as a critertion, the 23-variable model
explained 71.8 percent of the variance with 17 of the 23 variables,
while the 6-variable models only explained 50.1 percent of the variance
using all six variables. See Appendix D for a selected AID output
and Appendix F for a selected Leaps and Bounds output.

Next a log transformation was made on the 23-variable model
and run through Leaps and Bounds, and, surprisingly, the results did
not show an improvement over those of the untransformed data. Thus,
the untransformed 17 variables chosen by Leaps and Bounds were accepted
as those AID determined most important. This model will therefore
be used in the cross-validation experiments to follow. This 17-

variable model is described in Table XII.
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TABLE XI

Variables in the Two AID Models Considered

Model 1 Model 2

v v
AN W
w cc

V-w PD
V-AN AN
W-AN XMTR
CARNAV
V-CARNAV
W*CARNAV
CC.CARNAV

PD-CARNAV

k XMTR - CARNAV
V.1AN
V. IXMTR
W.IAN
W-IXMIR
CC-IAN
CC.IXMIR
PD°IAN
PD.IXMIR
AN.IXMTR
XMTR.IAN
IAN
IXMTR
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TABLE XII
AID Regression Model Determined by Leaps and Bounds
17
LSC/OH = B + I By X,
i=1
R2 = 718

i By Xy Partial-F
o | 2.658290567 - -
1 |- .155899 x 10-2 ' 11.7804
2 |- .779107 x 10-1 W 22.7635
3 .105464 x 1072 PD 5.52895
4 .961796 x 1071 XMTR 8.75757
5 .261128 x 101 CARNAV 7.58031
6 .700891 x 10-1 W. CARNAV 14.4932
7 |- .506175 x 10-2 PD.CARNAV 18.0098

r 8 |- .267022 x 10°1 AN CARNAV 7.62132
9 .878194 x 10-3 V.IAN 9.5718
10 |- .12007 x 10-2 W-IAN 17.8296
11 .143445 x 10~2 W+ IXMTR 3.85888
12 .204243 x 10™2 CC.IAN 12.2973
13 |- .112446 cC. IXMTR 13.4675
14 .21432 x 10~2 PD. IAN 15.1695
15 |- .402166 x 10~2 PD.IXMTR 22.0968
16 .153848 XMTR. IAN 8.40514
17 |- .547619 x 10l IXMTR 7.77109




V  Cross Validation, Conclusions and Recommendations

Cross Validation

Three equations developed by Pulcher and one developed by
Westinghouse have been reviewed, and one model developed by AID
has been analyzed. All have been based on the old Westinghouse
data collected in Phase I containing 63 data points,

A cross validation procedure was used to determine how well
these old models predict the new 71 data points contained in the
Phase II.

The first step was to use the new data in each of the old models
to find the cross validation SSE and SST. They were then used to find
the cross validation R? described in Chapter II., A summary of
results is given in Table XIII.

In both the Westinghouse model and the AID model, the cross
validation SSE was greater than the SST. This would tend to imply
that neither of the two models predict the new data very well. This
is a surprising result esgpecially for the Westinghouse model.

One possible explanation for this is that the Westinghouse model
was developed in such a way that much of the idiosyncrecies of the
data were explained. Notice the vast difference between the first
model described in Table IV and the second described in Table V. This
could also be the reason why the AID model failed to predict the

new data.
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TABLE XIII

Cross Validation Results

Model c.v. SSE SST c.v. R?
L&B- R 157.9096802275 227,701363 .3065053361
L&B-Cp 112,4418454273 227.701363 .50618720
SPSS 89.457779054 227,701363 .6071269467
Westinghouse * 227.701363 *
AID * 1755,2523798 *

* ¢.v.SSE was greater than SST
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The best model determined by the croas validation criterion was
Pulcher's SPSS model which had a c.v. R? value of .607 (see Table XIII).
Using those variables, updated coefficients have been computed
(see Table XIV). This new model using the old variables and just
the Phase II data has an R? value of .780 indicating that 787 of
the variance in the dependent variable is explained by the model.

With the complete set of data (134 data points) 70.97% of the varilance
was explained by the model. Table XV describes this model. (See
Appendix E for selected outputs from SPSS,)

Conclusions

A review of past research indicates that much literature is
available on criterion in the selection of variables in a multiple
regression thus indicating that it is an important subject not only
for mathematicians or operations researchers, but is important to
anyone attempting to develop valid models both for description and
prediction purposes. As a result, these criteria give the statisticians
a useful index of how well various models fit the data, however,
experience shows that the result of using a single criterion should
not be accepted as a final answer, but should be used with other
available statistics and individual's intuitive judgement in
developing a sound analysis.

This cross validation R? value was useful in evaluating the
prediction capabilities of the five models discussed. The three
models which used log transformed data and were developed by 4

Pulcher for description purposes on the old Westinghouse data

53 C

R |
Drng v p




*%

TABLE XIV

Pulcher's SPSS Model fitted to the New Data Points

ln LSC/OH = a, + Z ayD4 + :Z; Bjo In Xy + :2; i -BjiDi In x4

R? = .67923 RZ = .78004 F = 7,73752

Variable Name Coefficient Partial-F

UP 36000615 17946696

W .60315963 .43885436

ss 1102.0708 280.30031

NB 8.2056618 17.346404

SF -.33287310 .39887747

SB 99001459 .83450842
DIG -1.3736140 2,.5219780
EM 2.6000225 1.6961873

PS .12680075 .31751393

NF * UP .13008302 .15751183

NF * CcC -.13099197 . 22804494

NB * UP -.34773058 1.1390687

NB * Vv - -

NB * W -.75005236 2.6271934
DIG * V -.14280299 .60250900
DIG * W .49276704 .61187387

AN * UP .06467638 .13817898

AN * W -.13646127 .43869986

EM * V -.35382193 .25552978

XMIR * CC -.36370529 46191312
XMIR * SS 531.35247 667.96390
BF *W .0559571 2229430

BF * SS 59.533507 207.10304
Constant -10.43849 1,4928598

**Removed from the equation by SPSS.
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TABLE XV

Pulcher's SPSS Model Variables fitted to the Entire Data Set

(Phase I & Phage II)

In LSC/OH = ap + T a3iD1 + I B840 In %y + I I Byy Dy 1n x4
1 j 31

R? = ,64868 RZ = ,70944 F = 11,67717
Variable Name Coefficient Partial-F
UP 7.1760834 2.6076596
w - .58168533 2.8060750
SS - .31049321 .45804725
NB - ,12129190 .00539864
SF -1.0966765 .78704103
SB .20884626 .69860270
DIG .16839348 3.1550771
EM .50533178 16.807697
PS .43488570 2.1115964
NF * UP .036039607 .13695163
NF * CC ~ .048746736 .11610925
NB * UP - 11413454 .22280423
NB * V ~1.7249398 2.2502326
NB *# W 2.17249398 2.2513077
DIG * V - .19976096 .23782540
DIG * W .32683368 .50702946
AN * UP .024885722 .0627402
AN * W .032724716 .012309140
EM * V .14565893 .59932259
XMTIR * CC .29069072 7.6961250
XMIR * SS - .38171889 5.9613262
BF * W .028545024 .31109000
BF * SS - .008700618 .0471961
Constant - .70977903 85.146786
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had adequate predictive capabilities; the other two models (the
Westinghouse model and the AID model) were determined not to have very
good predictive capabilities.

The Automatic Interaction Detection Algorithm was useful in
prescreening important variables and reducing the total number of
variables to be used in a multiple regression, however, it did not
prove to be the best technique in developing regression models, for
the maximum R? value was only .780.

Recommendations

In his research, Pulcher used the Chow Test as ascreening device
to determine the most important variable subset using a Product of
Powers model. However, one assumption in using the test is that of
equal variances on the error term. In future analysis, I would
recommend the use of a technique developed by Jayatissa [21] of Tests
of Equality Between Subsets of Coefficients in Two Multiple Regressions
assuming unequal variances. This can be used as a prescreening device
to locate important variables. Then stepwise regression procedures
using SPSS can be used to develop a multiple regression model.

To the personnel at the Avionics Laboratory, I would recommend
that cross validation studies be made to insure that models developed
by contractors be able to predict new data so that new models do not
have to be developed every time new data is obtained.

All techniques used on this analysis were based on minimizing
the sum of squared errors. The many criterion for selection of
variables mentioned in this report should be given further consideratiom.
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APPENDIX A

LRU DESCRIPTION




APPENDIX A
LRU Description
No. LRU-ID ATRCRAFT DESCRIPTION
b 1 71829 F4E Amplifier, Computer
’ 2 73539 F4E Ballistics, Computer
3 71LBY F4E Receiver-Transmitter
4 71HKD F4E Platform, Gyro, Stab.
5 71PK9 RF4C Recelver-Transmitter
6 71pPB@ RF4C Amplifier, P.S. RCVR
7 71719 RF4C P.S. Leveling, Amplifier
8 724G¢ RF4C Power Supply
9 71G5¢ RF4C Computer, Navigation
10 71FAQ F15A Amplifier, Electronic
11 71FB@ F15A Gyroscope, Displacement
12 71CcAd KC135A Receiver-Transmitter
13 71pAP F15A Receiver-Transmitter
14 71ABE B52H Receiver
15 71ADA B52H Receiver-Transmitter
16 73DBA B52H Receiver-Transmitter
17 71AcC B52H Receiver
18 73CB9 B52H Amplifier
19 73CEN B52H Computer, A2 and EL
20 73CFK B52H Receiver-Transmitter
21 73DAH B52H Amplifier, Electronic Control
22 73EBA B52H Amp, Astrotrack, Servo
23 73EBF B52H Signal Amplifier
*24 71cad F15A Receiver
25 72EAA KC135A Receiver-Transmitter
26 72ECA KC135A Amplifier, Electronic Control
27 72BPO C5A Measurement Unit, IMU
28 713A9 C5A Receiver, VHF Navigational
29 71LA9 CSA Receiver-Transmitter
30 72DN@ C5A Processor Data
* DUPLICATE LRU-ID -~ Placed on a Different Aircraft i
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APPENDIX A
LRU Description (Con't)
No. LRU-ID ATRCRAFT DESCRIPTION
I 31 728 C5A P.S., Thermal Control
32 7171A C130E Receiver
33 7131D C130E Receiver-Transmitter
34 72RFP C130E P.S. Power Supply
35 72RBY C130E Amplifier
36 S1EAQ F15A Computer, Air Data
37 52AA9 F15A Computer, Flight Control
38 52AB@ F15A Computer, Flight Control
39 63BD9 F15A Control Panel, Int Nav
40 71AEQ F15A Inertial Measurement Unit
1 71AKQ F15A Control Indicator, Nav
42 743A9 F15a Indicator, Multiple Air Nav
' 43 74JC9 F15A Processor, Signal Data
44 52GAl F106 Amplifier-Interface
45 71JCE C54 Control Panel VHF Nav
46 72AEQ C5A Computer-Primary, IDNE
47 72ccd C5A Computer-Analog/Digital
48 71ZA9 C130E Receiver-Transmitter
49 71ZB¢ C130E Digital/Analog Converter
50 71zp@ C130E Control Unit
*51 71zA9 F111p Receiver-Transmitter
*52 71ZB@ F111p Digital/Analog Converter
53 71zc@ F111p Control
S4 73EGH F111D Computer, General Purpose
55 73EPP F111D Converter-Multiplexer
56 73HAQ £111p Stabilizer Platform
57 73HCO F111D Navigational Computer
58 73NAQ F111D Indicator, Horizontal Display
59 73NBS F111D Processor, Herizontal Display
60 73Q84 F111D Electronic Unit, Radar
* DUPLICATE LRU-ID -- Placed on a Different Aircraft 2
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APPENDIX A
LRU Description (Con't)

No. LRU-ID AIRCRAFT DESCRIPTION

61 73sC0O F111D Indicator, Digital Display
: 62 73KB9 F111D Antenna-Receiver

63 73KE@ F111D Amplifier, Power Supply

64 73KFP F111D Synchronizer-Transmitter
| 65 73pDP F111D Computer, Terrain Following
| *66 71CAP FB111A Receiver Unit v
: 67 73EGP FB11llA Computer, General Purpose

68 73HCH FB111A Navigational Computer Unit

69 73LA9 FB111lA Electronic Unit

70 75934 F4E Weapons Release Control

71 74BD@ F4E Computer

72 74BF9 F4E Transmitter

73 74819 F4E Gyroscope, Lead Comp.
, 74 76A19 RF4C Analyzer, Pulse

75 76GAD RF4C Signal Processor

76 74779 F15A Processor

77 74FAD F15A Transmitter

78 74FHO F15A Power Supply

79 74FU9 F15A Antenna

80 77ECH B52H Flir Signal Proc.

81 77EED B52H Flir Turret Drive

82 77DCA B52H STV Camera, Electronic

83 77DB9 B52H STV Turret Drive

84 73CR@ F4E Laser Control, Electronic

85 73cGH F4E Two Axis Gimbal Assembly

86 65BHP F15A Processor, Radar Target Data

87 74FC@ F15A Receiver, Radar

88 74730 F15A Oscillator-RF

89 74FK@ F15A Radar Set Control

90 74FQ9 F15A Processor, Radar Data

* DUPLICATE LRU-ID -- Placed on a Different Aircraft
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APPENDIX A
LRU Description (Con't)

No. LRU-ID AIRCRAFT DESCRIPTION
91 74RAD F15A Display Unit, Head Up
92 74KCP F15A Processor Signal Data
93 75AE9 F15a Converter-Programmer
94 74CAp F4E Indicator, Control

95 74CBg F4E Indicator, Pilot

96 74CCH F4E Indicator, PSO, IO
97 74FAL F106 -

98 74EB@ F15A Lead Computing Gyro
99 76AEA B52H Transmitter

100 73RAD FB11l1A Computer, TFR

101 73pHg F111p Power Supply, LV
102 73PB¢@ F111p Processor, Electronic
103 73PD@ F111D Radar Transmitter

104 73PFP F111D Signal Data Converter
105 73PM@ F1l1lp Reference Signal Gen.
106 71NAO F4E Receiver-Transmitter
107 71qug RF4C Receiver-Transmitter
108 63AA0 F15A Receiver-Transmitter
109 65AA0 F15A Receiver~Transmitter
110 63BAA B52H Receiver~Transmitter
111 63CAA B52H Receiver-Transmitter
112 65BAA B52H Receiver-Transmitter
113 61BBA B52H Receiver
114 65BAA KRC135A Receiver-Transmitter
115 63AF0 RC135A Receiver-Transmitter
116 63AA0 CSA Receiver-Transmitter
117 63121 Cl30E Receiver-Transmitter
118 63AAA Cl30E Receiver-Transmitter
119 SSALP C5A Central Multiplex Adapter
120 55Av@ C5A Computer Digital, Madar §




APPENDIX A
LRU Description (Con't)

No. LRU-ID AIRCRAFT DESCRIPTION
s 121 61AA0 C5A Exciter Receiver, HF/SSB
122 cJACP c5A Amplifier/Antenna Coupler
123 61AEP CSA Panel, Control, HF/SSB
124 62AA0 C5A Transceiver, VHF Comm
125 63460 F15A Radio Receiver
126 63BCH F15A Control Panel, Int Comm
127 63BF¢ F15A Control Panel, IFF
*120 61AA0 FB11lA Receiver-Transmitter
129 61AB0 FB111A Amplifier-Power Supply
#*130 61ACH FB111A Control
131 72AA9 FB111A Control, Radar Transponder
132 72ACH FB111A Receiver Transmitter
h 133 64211 C130E Intercom Set
134 64212 C130E Control Panel

* DUPLICATE LRU~ID -~ Placed on a Different Aircraft
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APPENDIX C

ITEMIZED INPUT FOR AID *

* Extracted from McNichols [25]
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1. Title Card

Card
Column(s)

1

2-49

50

51-56

79-80

2, TFORTRAN Foramt
Card
Column(s)
1-78

Itemized Input for AID

Use

Card Type

Job Title
IRUN

NCPERM

IFMT

Card(s)

Use

Data
Format

APPENDIX C

Description

Must contain the numeric value "1",

Up to 48 alphabetic and/or numeric
characters used to label the run.

A

Numeric "0" for normal AID operation

Number of cases in the data file, May
be omitted when data is from a disk or
tape file,

The number of cards used for the FORTRAN
format statement (the next card or set of
cards in the countrol card deck). Up to &
cards may be used,

Description

FORTRAN format statement beginning with a
left parenthesis and ending with a right
parenthesis, Only integer fields of the

form: Iw, where w is the number of characters
used to describe a variable, can be specified.
The characters: X can be used to skip columns,
T to tab to a desired character position, and
/ to indicate the beginning of a new record
for multiple record cases. Warning: be
careful not to extend the format statement
beyond column 78 as these characters are

not processed by AID. If more than 78
characters are needed for the format
statement, use another format card and

change the count in column 80 of the title
card.
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APPENDIX C

Itemized Input for AID (cont'd)

Description Card

Card
Column(s)

1

2-6

7-11

12-16

17-21

22-26

27-29

33

34

Use
Card Type

Stopping
Rule:P1l

Stopping
Rule:P2

Stopping
Rule
MAXGP

Stopping
Rule:
NMIN

Iteration
Print:
KSTOP

No. of
Variables
NV

Rewind:

Missing
Values:
I0PT

Description

Must contain the numeric value "3"

Minimum value of TSS;/TSSy to consider
group 1 for splitting, (Secttfon 8.2.2,
paragraph 2), A decimal point is implied
to the left of col. 2,

Minimum value of BSSy/TSSq to permit

group i to split (Section 8.2.2, paragraph
3). A decimal point is implied to the
left of column 7.

Maximum number of subgroups into which
the set of data will be split.

Minimum number of observations which must
be in a group after it is split. Value
must be at least 2.

Number of AID iterations for which detailed
information will be printed. Only summary

results for iterations will be output after
this point,

Specifies number of variables to be read
from each case, This will be the total
number of variables described by the format
statement.

Should be the numeric value "1" if input
data is on a disk or tape file, left
blank otherwise.

Set to "1" if a case with any out-of-range
predictor values is to be rejected, blank or
zero otherwise. The "1" value is analogous
to listwise deletlion in SPSS, as far as the
predictor variables are concerned. There is
no capability in AID which corresponds
directly to a pairwise deletion option. The
IOPT setting must be considered when
predictor cards (type 4) are coded.
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Card

Column(s)

37

38

APPENDIX C

Use

Input
Medium:
ICARD

Tree
Control:
ITREE

Predictor Card(s)

Card

Column (s)

1

2-19

20-22

23

Use

Card Type

Predictor
Name

Field
Number

Predictor

Type:
KBL1

Itemized Tnput for AID (cont'd)

Description

If zero or blank, the data file is assumed
to be a disk or tape file with the local
file name "TAPE25". 1If set to "1", data
is assumed to be on punched cards which
follow the AID control cards.

This parameter controls the output of
computer printed tree diagrams summarizing
the splits. If set to zero or blank, no
diagrams are generated., If set to "1",
only a detailed tree is generated, If

set to "2", both a detailed and a skeleton
tree will be produced.

Description

Must contain the numeric value '4"

There will be one predictor card for each
predictor variable to be used in the AID
run, However, all predictors described by
the fermat statement do not need to be used
in the AID run. The NV parameter (card 3)
has a value associated with the number of
variables described by the format statement,
not the number of predictor cards used in
the run, .

Up to 18 alphabetic or numeric characters
used to label the predictors in the AID output,

A variable number which must correspond to

the variable sequence provided by the format
statement. This 1is, the third variable
described by the format statement represents
field number 3 for predictor variable numdbering
purposes

Zero or blank for predictors to be treated
as nominally scaled, "1" for variables to
be treated as ordinally scaled. The
example in section 8.1 illustrates the
nature of the treatment of nominal and
ordinal variables in AID.
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Card
Column{(s)

24

A. IOPT Equal

APPENDIX C

Itemized Input for AID (cont'd)

Use

Predictor
Definition:
KBL2

Description

This parameter, used in conjunction with

the IOPT value on card 3, tells AID how

to interpret the values on the remainder

of the predictor card. A zero value indicates
that the range of possible values for this
predictor variable will be divided into
intervals of fixed length. A value of

"1" means that the range of values for

this predictor will be divided into

intervals of varying length. When KBL2

is set to zero, minimum and maximum values

and an interval length will be provided.

When KBL2 is set to "1", boundaries for

the intervals into which the range of
predictor values will be divided will be
specified, Figure 8.7 summarizes the
interpretation of IOPT/KBL2 value combinations
and should be referenced in choosing the
desired values and predictor card format.

Zero and KBL2 Equal Zero:

Carxd
Column(s)
